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Universidad Técnica “Federı́co Santa Marı́a”

Departamento de Informática
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Abstract: The contribution of this work is focused on the analysis and synthesis of controllers based on static output
feedback (SOF), for a class of descriptor linear parameter variable (LPV) systems. Descriptors systems, called
also: differential-algebraic systems, singular systems, semi-state systems or generalized state-space systems; are
considered to possess disturbances and parametric uncertainties of polytopic type, as are described by the following
equation:

Eż(t) = F(ρ)z(t) + B(ρ)ω(t) +Bu(t), h(t) = C(ρ)z(t),

where ρ is a parametric variation. From a condition of existence of a linear injective application, representing the
generalized inverse matrix of E, the original descriptor system is transformed to a LPV system. Then, the condition
for the static output feedback on the LPV system is analyzed. Synthesis of the SOF-based controller is obtained
considering performance indices in H2 and H∞, described as linear matrix inequalities, LMIs, as criteria in order
to obtain the gain of SOF, in the presence of uncertainties and disturbances.

Key–Words: Descriptor systems. LPV systems. Static output feedback (SOF). H2-H∞ norms. Robust control.

1 Introduction

Since its introduction in 1977 [15], descriptor sys-
tems (DS), also called singular systems, semi-state
systems, differential-algebraic systems or generalized
state-space systems; have been one of the main re-
search fields within control theory, since they are a
natural and general representation of dynamic sys-
tems. Unlike their regular counterparts in state space,
a DS allows a representation that incorporates alge-
braic constraints in their physical variables. Over the
past two decades, descriptor systems have attracted
much attention because of the comprehensive uses in
many real world systems, such as in the economy
(Leontief dynamic model), social models, electrical
systems, chemical processes, and mechanical mod-
els (robotics). Considerable progress has since been
made in the investigation of such systems. A problem
that has been well studied is the admissibility of DS,
being a research line that still remains open.

On the other hand, the context of linear parame-
ter variable (LPV) systems refers to linear dynamical
systems whose state-space representations depend on
exogenous non-stationary parameters [24]. LPV sys-
tems are a generalization of LTV systems, establishing
an intermediate model between linear and nonlinear
dynamics, so they can be constituted in a represen-
tative model for the control of non-linear processes,

allowing the use of all machinery of control of lin-
ear systems to the case of particular nonlinear pro-
cesses control [5]. In addition, if the nonlinear model
is formulated as a parameterized linear system, where
parameterization is state dependent, it allows an LPV
description to represent a non-local nonlinear system,
taking advantage of the consequences of a global sta-
bilization [11, 5]. Thus, the LPV representation of a
nonlinear system describes a class of systems larger
than the original nonlinear system.

When there are combined the modeling of physi-
cal systems with uncertain parameters, there arise dy-
namic systems that represent uncertain DS. As is well
known, for modeling many applications and techni-
cal processes, only approximate models are available,
so that the analysis of DS subject to uncertainties has
been a very active research line. For example, nu-
merous analysis and synthesis problems have been ad-
dressed in the literature: the analysis of robust stabil-
ity (admissibility), stabilization, analysis of the robust
controllability and observability, robust control under
the characterization of the H∞-H2 norms, robust fil-
tering, analysis and positive real control, among other
lines of work, [25, 27, 10]. The main results in the
analysis and synthesis of DS-dependent parameters
are based on parametric Lyapunov functions, which
allow to minimize the conservatism of classic Lya-
punov functions, when searching numerical solutions
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through LMIs, representing a formulation that allows
the resolution of complicated control problems very
efficiently, and with a remarkable degree of simplicity
[7].

In this context, this paper addresses the analysis
of robust admissibility and control for an DS class of
continuous time and with polytopic type uncertainties
in the dependent parameters, by using the character-
izations of the H2-H∞ norms as LMIs, which arise
from parameter dependent Lyapunov functions. The
DS class is the one where there is a linear injection
application that allows to transform the parameter de-
pendent DS to a regular LPV system. The existence of
linear transformation ensures that the analysis of the
properties results of the transformed LPV system are
transferred to the finite modes of the original parame-
ter dependent DS. Likewise, the robust control design,
for the transformed LPV system, is a guarantee of sat-
isfying the admissibility and robust performance for
the original DS system. Thus, the condition for the
static output feedback (SOF) on the transformed LPV
system is analyzed. The SOF controller synthesis is
obtained by considering performance indexes in H2

and H∞, described as LMIs, as criteria to obtain the
extended SOF gain, which considers a feedback gain
for the output, and a feedback gain for its derivative.

Notation. < is the set of real numbers. For a
matrix A, AT denotes its transpose. tr (A) defines
the trace of the matrix A. In symmetric matrices
partitions ? denotes each of its symmetric blocks. I
defines the identity matrix of appropriate dimension.
L2 is the Hilbert space of vectorial signals defined
on (−∞,∞), with scalar product < x | y >=∫∞
−∞ x(τ)∗y(τ)dτ and such that ‖ x ‖2 , < x |
x >1/2 <∞, ∀x ∈ L2.

1.1 Preliminaries

Important results that must be taken into account,
since they will be used in the development of the pro-
posed technique, correspond to the extended charac-
terizations as linear matrix inequalities (LMI)s of the
H∞ and H2 norms for linear systems [26, 19].

Consider the LTI system defined by

ẋ = Ax+Bω

y = Cx+Dω (1)

Lemma 1 (Relaxed H2 performance) Consider the
system (1), where D = 0. For P = P T > 0, the
following statements are equivalent:

i) A is stable and
∥∥C(sI−A)−1B

∥∥2

2
< µ.

ii) There exist P and Z, such that: tr(Z) < 1 and[
ATP + PA PB

BTP −µI

]
< 0,

[
P CT

C Z

]
> 0

(2)

iii) There exist P,Z and G, such that: tr(Z) < 1
and −(G+GT ) GTA+ P +GT GTB
ATG+ P +G −2P 0

BTG 0 −µI

 < 0,

(3)[
P CT

C Z

]
> 0

Proof: See [26]. �
Similarly for the H2 case, there are some results

to improve performance in H∞, from improved ver-
sions of Bounded Real Lemma, as shown below.

Lemma 2 (Relaxed H∞ performance) Consider
the system (1). For P = P T > 0 and the matrix G,
the following statements are equivalent:

i) A is stable and
∥∥C(sI−A)−1B +D

∥∥
∞ < γ

ii) There exist P , such thatATP + PA PB CT

BTP −γ2I DT

C D −I

 < 0 (4)

iii) There exist P and G such that, for τ � 1
−(G+GT ) GTA+ P + τGT 0 GTB

ATG+ P + τG −2τP CT 0
0 C −I D

BTG 0 DT −γ2I

 < 0

(5)

Proof: Conditions i) and ii) are the well known
Bounded Real Lemma. Equivalence between ii) and
iii) can be seen in [26]. �

2 Descriptor and LPV systems

2.1 Descriptor systems

The DS systems, also called singular systems, semi-
state systems, differential-algebraic systems or gener-
alized state-space systems; have been one of the main
fields of control theory research since its introduction
in [15]. Over the last two decades, the DSs have at-
tracted much attention due to the comprehensive uses
in the economy, such as the Leontief dynamic model,
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in electrical systems, chemical processes, and me-
chanical models. Since then, considerable progress
has been made in the investigation of such systems
[10].

An DS is dynamically defined by

Eż(t) = Fz(t) +Bu(t),

h(t) = Cz(t) (6)

where z(t) ∈ Rn is the vector of descriptor variable
(instead of state vector), E ∈ Rm×n, with m ≤ n and
rank(E) = r ≤ n and which is called the descriptor
matrix; and F ∈ Rm×n, B ∈ Rm×l, C ∈ Rp×n; the
control function u belonging to L2(0, τ ;Rl).

If m = n and if for all t ∈ [0, τ ], the polynomial
p(s) = det (sE−F) satisfies that p(s) 6= 0, it is said
that the pair (E,F) is regular. Otherwise, it is called
singular.

The solution and many of the properties of a free
DS (u = 0) can be characterized in terms of the Weier-
straß canonical form [14, 10], which allows to trans-
form the matrix E into a Jordan canonical form, with
a finite number of eigenvalues (finite dynamic mode),
plus a nilpotent matrix, also in Jordan canonical form,
representing a number of infinite eigenvalues (impul-
sive mode). The nilpotency index of the nilpotent ma-
trix is called system index. If E is non-singular, the
system is said to have zero index.

Definition 3 Consider the system (6), and be κ =
deg(det(sE − F)). If κ = r is said that the DS is
of free impulse.

Thus, the DS (6) has κ finite dynamic modes, r−
κ impulsive modes, and n− r non-dynamic modes.

Definition 4 Let the DS given by (6), with E,F ∈
Rn×n, B ∈ Rn×l and C ∈ Rp×n. In addition,
be the matrices: T and S,with img T = ker ET ,
img S = ker E.

i) For the triplet (E,F , B) is said that the system is of
stabilizable finite dynamics if rank[λE−F , B] =
n ∀λ ∈ C+.

ii) For the triplet (E,F , B) is said that the system is
impulse controllable if rank[λE,FS, B] = n.

iii) For the triplet (E,F , B) the system is said to be
strongly stabilizable if i) and ii) are satisfied.

iv) For the triplet (E,F , C) is said that the system
has detectable finite dynamics if rank[λET −
FT , CT ] = n ∀λ ∈ C+.

v) For the triplet (E,F , C) is said that the system is
impulse observable if rank[λET ,FTT, CT ] = n.

vi) For the triplet (E,F , C) the system is said to be
strongly detectable if iv) and v) are satisfied.

A controllability analysis for DS is presented
in [3, 12]. In that order of ideas, in [13] a study
of the controllability condition for a semilineal non-
autonomous DS, by transforming the system from a
linear injective application, is presented.

Theorem 5 Let the system (6), with the pair (E,F)
regular; and let u = 0.

1. The trivial solution z = 0 of the system is stable
if and only if all the finite eigenvalues of λE−F
are in the closed left half-plane and the eigenval-
ues on imaginary axis are simple.

2. The trivial solution z = 0 of the system is asymp-
totically stable if and only if all the finite eigen-
values of λE−F are in the open left half-plane.
This means that finite dynamic modes are asymp-
totically stable.

Proof: See [18, 27]. �

Definition 6 Consider the system (6). It is said that
the DS is admissible if it is regular, free impulse and
stable.

Definition 6 allows to establish conditions for the
control of DS in the sense of its stabilization [7]. In-
deed:

1. For the triplet (E,F , B) is said that the system
has stabilizable finite dynamics and impulse con-
trollable if a matrix K exists such that the pair
(E,F +BK) is admissible.

2. For the triplet (E,F , C) is said that the system
is of finite dynamics detectable and impulse ob-
servable if a matrix L exists such that the pair
(E,F + LC) is admissible.

On the other hand, if the system (6) is regular and
free impulse, through the algebraic-differential ma-
nipulation of the non-dynamic modes, it is possible
to obtain a system descriptor of the form

Eż(t) = Fz(t) + Bu(t),

h(t) = Cz(t) (7)

where E ∈ <r×n, F ∈ <r×n and B ∈ <r×m, rep-
resenting the dynamic modes of the original system.
Thus, the admissibility problem of the system (6) is
equivalent to the admissibility of the system (7).
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2.2 LPV systems

Definition 7 An LPV is a dynamic system in which
matrices contain functions that depend on a vector of
known variant parameters.

According to Definition 7, a representative LPV
model is of the form:

ẋ(t) = A(α(t))x(t) +B(α(t))u(t); x(t0) = x0

y(t) = C(α(t))x(t) (8)

where x(t) ∈ <n are the states, u(t) ∈ <p are the
controls and y(t) ∈ <q are the measured output.
α(t) : R+ → Rl. If α(t) = t, l = 1, the LPV
model describes an LTV system.

The typical constraints on exogenous parameters
are limits on magnitudes and their indexes of varia-
tions, that is, ∀t ≥ 0

ρ ≤ α(t) ≤ ρ̄, µ ≤ α̇(t) ≤ µ̄ (9)

2.2.1 Polytopical LPV systems

Consider the system (8). That system can be charac-
terized as a polytope if it is defined

P :=

(
A(α) B(α)
C(α) 0

)
∈ Ω. (10)

where Ω is a polytopic set, which is defined as:

Ω :=

{
P : P =

l∑
i=1

αiPi; αi ≥ 0;
l∑

i=1

αi = 1

}
;

(11)
so that any admissible matrix P of the system can be
written as an unknown convex combination of l vertex
matrices given, such that

Pi =

(
Ai Bi

Ci 0

)
(12)

where Ai, Bi, Ci, i = 1, . . . , l, are given matrices,
representing the polytope vertices. Thus, this system
can be characterized by the convex hull of Ω consid-
ering the vertices of the polytope, ie

Co Ω =

{(
A1 B1

C1 0

)
, . . . ,

(
Al Bl

Cl 0

)}
. (13)

where these matrix vertices are known, provided that
αi ∈ <, αi ≥ 0, i = 1, . . . , l,

∑l
i=1 αi = 1.

Consequently, from the dependence of the system
matrices with respect to the α parameter, and from the

membership of those matrices to the polytope Ω, then,
with x(t0) = x0:

ẋ(t) =

(
l∑

i=1

Aiαi

)
x(t) +

(
l∑

i=1

Biαi

)
u(t);

y(t) =

(
l∑

i=1

Ciαi

)
x(t) (14)

where αi ∈ <, αi ≥ 0, i = 1, . . . , l,
∑l

i=1 αi = 1.
The controllability and observability conditions

of these systems can be analyzed in [1, 11] and [22].
The stability and robust stabilization of polytopic LPV
systems can be studied in [6, 24], as well in [21, 22].

3 Problem formulation

Consider an DS as (6), but with parametric uncertainty
and perturbations, that is:

Eż(t) = F(ρ)z(t) + B1(ρ)ω(t) +Bu(t)

h(t) = C(ρ)z(t) +D1(ρ)ω(t) (15)
y(t) = C2z(t)

which constitutes an LPV descriptor system. There,
u(t) ∈ <q are the controls; ω(t) ∈ <d are distur-
bances; h(t) ∈ <p are the controlled outputs and
y(t) ∈ <p are the measured outputs. The parametric
variation ρ is assumed to meet the constraints defined
in (9). E ∈ Rm×n, and rank(E) = r < n. It can
be assumed that r = m, so that the system is of the
form given by (7), with parametric uncertainties. The
matrices F , B1, B, C, D and C2 are of appropriate
dimensions. In addition, for all ρ, it is assumed that:

1. For the triplet (E,F , B), the finite dynamics of
the system is stabilizable and impulse control-
lable.

2. For the triplet (E,F , C2), the finite dynamics of
the system is detectable and impulse observable.

The above conditions lead to solutions to the sta-
bility and robust performance problem for the system
(15). B and C2 are matrices known for the fact that
they characterize, from a practical point of view, the
actuators and sensors, respectively, which are the suit-
ably selected devices in the control systems.

The study of the robust stabilization of DS type
LPV has been reported in [25, 14, 9, 4, 8]. In these
contributions the controllers are state feedback type
and the uncertainty is usually assumed only in the dy-
namic matrix. In [17, 16] and in [20] output feedback
is applied, again in models with very particular uncer-
tainties. Finally, in [7, 2] SOF is used for the robust
stabilization of a polytopic type DS with the matrix E
certain and undisturbed.
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3.1 Robust admissibility and performance
problem

Consider the system (15) with (E,F , B) defining an
stabilizable and impulse controllable finite dynamics;
and (E,F , C2) is such that the finite dynamics is de-
tectable and impulse observable.

Problem 8 Design a control u(t) for the system (15)
such that the corresponding closed loop system will
be admissible.

Problem 9 Design a control u(t) for the system
(15) such that the corresponding closed loop system
will be admissible and the effect of the perturbation
omega(t) on the controlled output h(t) will be mini-
mum in the sense of the H2-H∞ norms.

For Problem 8, relative to robust stabilization, it is
assumed that ω(t) = 0. Next, the problem 9 demands,
in addition to robust stabilization, to satisfy a robust
performance index characterized under the H2-H∞
norms.

4 Admissibilization of LPV descrip-
tor systems

In this section we present the main results of the work,
which consists in proposing an extended SOF control
that depends on the output and its derivative. So, be
the control of the form:

u(t) = K0y(t) +K1ẏ(t), (16)

where K0 y K1 are the feedback gains, to be deter-
mined, for the output and its derivative. In this case,
the derivative of the output is used in the context of the
derivative action on PID controllers. Thus, the control
will be given by

u(t) = K0y(t) +K1C2ż(t) (17)

There are some aspects that determine the advan-
tages of this type of controller [21]:

1. If C2 = I, the design is reduced to a typical state
feedback control.

2. If K1 = 0, corresponds to a classic SOF control.

3. By using theK0 andK1 gains, many systems that
can not be controlled by a classic SOF, can be
stabilized by this way. In addition, it is easier to
implement than a dynamic output feedback con-
trol.

As can be seen in (17), the control u(t) depends
on the dynamics of z(t). In order to construct the con-
trol, a particular class of linear DSs to variant param-
eters is assumed, those in which the following condi-
tion is satisfied:

det
(
EET

)
6= 0 (18)

This means that there is a linear injective application
Γ, which represents the general inverse of E, that is,
EΓE = E.

Therefore, let the change of variable z(t) =
Γx(t). Consequently, EΓ = I, then the system (15)
is transformed into an LPV system:

ẋ(t) = A(ρ)x(t) + B1(ρ)ω(t) +Bu(t)

h(t) = C1(ρ)x(t) +D1(ρ)ω(t) (19)
y(t) = CΓx(t)

where A(ρ) = F(ρ)Γ, C1(ρ) = C(ρ)Γ and CΓ =
C2Γ. The control design for the original system (15)
can be constructed from the transformed system (19).

Proposition 10 Consider the system (19). If for all
ρ the pair (A(ρ), B) is controlable and the pair
(CΓ, A(ρ)) is observable, then the system (15) is of
finite dynamic stabilizable and impulse controlable,
and of finite dynamic detectable and impulse observ-
able.

In fact, the existence of the linear transformation
Γ implies that the system (15) is regular and impulse
free: if there exists Γ, the regular system (19) is ob-
tained, since the regularity of (15) depends on the pair
(sE,F(ρ)) be regular, whose condition becomes the
regularity of the pair (sI, A(ρ)), which is always sat-
isfied. In addition, (19) is characterized by the dy-
namic matrix A(ρ) whose spectrum defines the finite
modes of the system (15). Then, according to the re-
sults shown in [13], the controllability (observability)
properties of the original system are transferred in the
transformed system, that is, if for all ρ:

1. the triplet (E,F(ρ), B) defines a system with fi-
nite dynamics stabilizable and impulse control-
lable, then the pair (A(ρ), B) is controllable;

2. the triplet (E,F(ρ), C2) defines a system with
detectable and impulse observable finite dynam-
ics, then pair (CΓ, A(ρ)) is observable.

Therefore, the problem of admissibility for LPV
type DS becomes a problem of control of LPV sys-
tems. Consequently, let the system (19) and consider
a control law given by (16), then

u(t) = (I−K1CΓB)−1 (K0CΓ +K1CΓA(ρ))x(t)
(20)
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As can be observed, the existence of the control de-
pends on the invertibility of the matrix I − K1CΓB,
which is a more weak condition with respect to the
conditions for the typical SOF control [21, 22]. In
short, the admissibility problem of the system (15)
corresponds to the synthesis of a control for the sys-
tem (19), [23].

4.1 Robust Stabilization

Let the system (19) with the pair (A(ρ), B) control-
lable and ω(t) = 0. It is also assumed that the system
supports a polytopic representation according to (12).
Be a control of the form (20), then the closed loop
dynamic matrix is:

Ac = A(ρ) +BM−1 (K0CΓ +K1CΓA(ρ)) ,

where M = I − K1CΓB and for which M is nonsin-
gular, so that M−1 exists, which allows to calculate
u(t).

Theorem 11 Let the system (19) with the pair
(A(ρ), B) controllable. There is an extended SOF
control of the form (20) that stabilizes in closed-loop
system, if there exists M non-singular and the matrix
P = P T � 0, and matrices X , Y , Z such that the
following LMI is satisfied

PAi +AT
i P +BXCΓ + CT

ΓX
TBT+

BY CΓAi +AT
i C

T
Γ Y

TBT ≺ 0, (21)

where Ai, i = 1, . . . , l, representing the polytope ver-
tices, then the feedback gains are obtained from

K0 = MZ−1X (22)
K1 = MZ−1Y (23)

with PB = BZ and M−1 = I + Z−1Y CΓB.

Proof: It is known that for closed-loop stability,
there exists P = P T � 0 such that PAc +AT

c P ≺ 0,
then substituting

PAi + PBM−1K0CΓ + PBM−1K1CΓAi +AT
i P+

CT
ΓKT

0 (M−1)TBTP +AT
i C

T
ΓKT

1 (M−1)TBTP ≺ 0

For the linearization of the matrix inequality, if PB =
BZ and variable changes X = ZM−1K0, Y =
ZM−1K1, the LMI given by (21) is obtained. More-
over, as M = I−K1CΓB and Z−1Y = M−1K1, then
the expression for M−1 is obtained, which depends on
the numerical solution of the LMI (21) and the known
matrices of the system (15). �

It may be noted that Z−1 = (BTB)−1BTP−1B.
Thus, the admissibility problem of the system (15) is
solved by robust stabilization of the system (19).

4.2 Robust stabilization and performance

Let the system (19) with the pair (A(ρ), B) control-
lable. This system supports a polytopic representation
according to (12). Be a control given by (20), then the
closed loop system is:

ẋ(t) = Acx(t) + Bcω(t)

h(t) = C1(ρ)x(t) +D1(ρ)ω(t) (24)

where

Ac = A(ρ) +BM−1K0CΓ +BM−1K1CΓA(ρ)

Bc = B1(ρ) +BM−1K1CΓB1(ρ)

As it has been proposed, it is required to design
K0 and K1 such that Ac be robustly stable, and that
the effect of the perturbation ω(t) on controlled output
h(t) be minimum according to performance indices in
H2 −H∞, which are characterized by LMIs accord-
ing to the Lemma 1 and the Lemma 2.

4.2.1 Design in H2

Theorem 12 Let the system (19) with the pair
(A(ρ), B) controllable and D1(ρ) = 0, which sup-
ports a polytopic representation whose vertices are
defined by Ai, B1i , CΓ and C1i . There is a control
law of the form (20), which guarantees a suboptimal
performance in H2 for the closed loop system (24),
if there exist G ∈ <n×n, X ∈ <n×p, Y ∈ <n×p,
Pi = P T

i � 0 ∈ <n×n, W ∈ <p×n such that
tr(W ) < 1 and the following LMI is satisfied−G−GT Φ Υ

? −2Pi 0
? ? −µI

 < 0,

[
Pi (C1i)

T

C1i W

]
> 0,

(25)

for i = 1, . . . , l, where Φ = GTAi + BXCΓ +
BY CΓAi + Pi + GT and Υ = GTB1i + BY CΓB1i .
The feedback gains are:

K0 = MZ−1X (26)
K1 = MZ−1Y (27)

with GTB = BZ and M−1 = I + Z−1Y CΓB.

Proof: Applying clause iii) of the Lemma 1 to the
closed loop system (24), matrix inequalities are ob-
tained. After, for the matrix inequalities linearization
are used the changes of variables GTB = BZ and
X = ZM−1K0, Y = ZM−1K1, which generate, by
substitution, the LMI (25). �
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In this case, Z−1 = (BTB)−1BT (GT )−1B, so
that the gains are obtained from the numerical solu-
tion of the LMI and known matrices of the original
system (15). Consequently, the admissibility with ro-
bust performance of the system (15), has been solved
in the transformed system as a robust control problem
in H2, using extended SOF.

4.3 Design in H∞

Theorem 13 Let the system (19) with the pair
(A(ρ), B) controllable, which supports a polytopic
representation whose vertices are defined by Ai, B1i ,
CΓ and C1i . There is a control law of the form (20),
which guarantees a suboptimal performance in H∞
for the closed loop system (24), if the following LMI
is satisfied
−G−GT Φ 0 Υ

? −2τPi (C1i)
T 0

? ? −I D1i

? ? ? −γ2I

 < 0, (28)

for i = 1, . . . , l, where Φ = GTAi + BXCΓ +
BY CΓAi +Pi + τGT and Υ = GTB1i +BY CΓB1i;
G ∈ <n×n, X ∈ <n×p, Y ∈ <n×p, Pi = P T

i � 0 ∈
<n×n and τ >> 1. The feedback gains are:

K0 = MZ−1X (29)
K1 = MZ−1Y (30)

with GTB = BZ and M−1 = I + Z−1Y CΓB.

Proof: Considering the closed-loop system (24),
the Lemma 2 is applied. Then, the procedure of
linearization of matrix inequalities is followed by
changes of variables, as has been done for the proof
of the Theorem 12. �

In order to reduce conservatism, in the character-
ization of the relaxed norms in H2-H∞ as LMIs, the
P matrix does not necessarily have to be unique, so
that the matrices Pi = P T

i � 0 can be used. On the
other hand, mixed performance indices in H2-H∞
can be imposed, so control synthesis, for robust ad-
missibility and performance in closed loop, meet mul-
tiple objectives.

5 Concluding remarks

From the results obtained in this research, the contri-
butions are focused on the analysis and synthesis of
controllers for a class of linear descriptor systems de-
pendent on parameters. First, a model of linear de-
scriptor systems with variable parameters has been

considered. Then, an analysis of admissibility and
robust control for a class of descriptor systems with
polytopic parametric uncertainties has been presented.
The class is defined by those processes where there
is a linear injective application that allows to trans-
form the parameter-dependent descriptor system to a
regular LPV system. Thus, the properties and condi-
tions of the original system are conserved in the trans-
formed system, which guarantees the design of a con-
trol for the robust admissibility (stability) and the ro-
bust performance. The design of the control in the
transformed system is a guarantee of satisfying the ro-
bust admissibility and performance for the original de-
scriptor system. The synthesis of the control law has
been done by means of the static feedback of the ex-
tended output, which is based on obtaining a feedback
gain for the output and a feedback gain for its deriva-
tive. These gains are derived by robust stabilizing and
robust performance of LPV systems, using the char-
acterizations of the H2-H∞ norms as LMIs, which
arise from parameter dependent Lyapunov functions.
The design technique also allows to impose multi-
objective specifications. The theoretical results have
been evaluated through simulations. The technique
can be extended to systems with uncertainties in the
descriptor matrix.
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